Abstract |
SCOPE: The glucosinolate glucoraphanin from broccoli is converted to sulforaphane (SFN) or sulforaphane-nitrile (SFN-NIT) by plant enzymes or the gut microbiome. Human feeding studies typically observe high inter-individual variation in absorption and excretion of SFN, however, the source of this variation is not fully known. To address this, a human feeding trial to comprehensively evaluate inter-individual variation in the absorption and excretion of all known SFN metabolites in urine, plasma, and stool, and tested the hypothesis that gut microbiome composition influences inter-individual variation in total SFN excretion has been conducted.
METHODS AND RESULTS: Participants (n = 55) consumed a single serving of broccoli or alfalfa sprouts and plasma, stool, and total urine are collected over 72 h for quantification of SFN metabolites and gut microbiome profiling using 16S gene sequencing. SFN-NIT excretion is markedly slower than SFN excretion (72 h vs 24 h). Members of genus Bifidobacterium, Dorea, and Ruminococcus torques are positively associated with SFN metabolite excretion while members of genus Alistipes and Blautia has a negative association.
CONCLUSION: This is the first report of SFN-NIT metabolite levels in human plasma, urine, and stool following consumption of broccoli sprouts. The results help explain factors driving inter-individual variation in SFN metabolism and are relevant for precision nutrition.
|