Title | Preprint: Deep autoencoder-based behavioral pattern recognition outperforms standard statistical methods in high-dimensional zebrafish studies. |
Publication Type | Journal Article |
Year of Publication | 2023 |
Authors | Green, AJ, Truong, L, Thunga, P, Leong, C, Hancock, M, Tanguay, RL, Reif, DM |
Journal | bioRxiv |
Date Published | 2023 Sep 17 |
Abstract | Zebrafish have become an essential tool in screening for developmental neurotoxic chemicals and their molecular targets. The success of zebrafish as a screening model is partially due to their physical characteristics including their relatively simple nervous system, rapid development, experimental tractability, and genetic diversity combined with technical advantages that allow for the generation of large amounts of high-dimensional behavioral data. These data are complex and require advanced machine learning and statistical techniques to comprehensively analyze and capture spatiotemporal responses. To accomplish this goal, we have trained semi-supervised deep autoencoders using behavior data from unexposed larval zebrafish to extract quintessential "normal" behavior. Following training, our network was evaluated using data from larvae shown to have significant changes in behavior (using a traditional statistical framework) following exposure to toxicants that include nanomaterials, aromatics, per- and polyfluoroalkyl substances (PFAS), and other environmental contaminants. Further, our model identified new chemicals (Perfluoro-n-octadecanoic acid, 8-Chloroperfluorooctylphosphonic acid, and Nonafluoropentanamide) as capable of inducing abnormal behavior at multiple chemical-concentrations pairs not captured using distance moved alone. Leveraging this deep learning model will allow for better characterization of the different exposure-induced behavioral phenotypes, facilitate improved genetic and neurobehavioral analysis in mechanistic determination studies and provide a robust framework for analyzing complex behaviors found in higher-order model systems. |
DOI | 10.1101/2023.09.13.557544 |
Alternate Journal | bioRxiv |
PubMed ID | 37745446 |
PubMed Central ID | PMC10515950 |
Grant List | P30 ES025128 / ES / NIEHS NIH HHS / United States P30 ES030287 / ES / NIEHS NIH HHS / United States R01 CA161608 / CA / NCI NIH HHS / United States R56 ES030007 / ES / NIEHS NIH HHS / United States |