Title | Mutagenicity assessment downstream of oil and gas produced water discharges intended for agricultural beneficial reuse. |
Publication Type | Journal Article |
Year of Publication | 2020 |
Authors | McLaughlin, MC, Blotevogel, J, Watson, RA, Schell, B, Blewett, TA, Folkerts, EJ, Goss, GG, Truong, L, Tanguay, RL, Argueso, JLucas, Borch, T |
Journal | Sci Total Environ |
Volume | 715 |
Pagination | 136944 |
Date Published | 2020 May 01 |
ISSN | 1879-1026 |
Keywords | Animals, Daphnia, DNA Copy Number Variations, Gases, Mutagens, Oils, United States, Water, Water Pollutants, Chemical |
Abstract | Produced water is the largest waste stream associated with oil and gas operations. This complex fluid contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In the United States, west of the 98th meridian, the federal National Pollutant Discharge Elimination System (NPDES) exemption allows release of produced water for agricultural beneficial reuse. The goal of this study was to quantify mutagenicity of a produced water NPDES release and discharge stream. We used four mutation assays in budding yeast cells that provide rate estimates for copy number variation (CNV) duplications and deletions, as well as forward and reversion point mutations. Higher mutation rates were observed at the discharge and decreased with distance downstream, which correlated with the concentrations of known carcinogens detected in the stream (e.g., benzene, radium), described in a companion study. Mutation rate increases were most prominent for CNV duplications and were higher than mutations observed in mixtures of known toxic compounds. Additionally, the samples were evaluated for acute toxicity in Daphnia magna and developmental toxicity in zebrafish. Acute toxicity was minimal, and no developmental toxicity was observed. This study illustrates that chemical analysis alone (McLaughlin et al., 2020) is insufficient for characterizing the risk of produced water NPDES releases and that a thorough evaluation of chronic toxicity is necessary to fully assess produced water for beneficial reuse. |
DOI | 10.1016/j.scitotenv.2020.136944 |
Alternate Journal | Sci Total Environ |
PubMed ID | 32014773 |
PubMed Central ID | PMC7243347 |
Grant List | R35 GM119788 / GM / NIGMS NIH HHS / United States |