Title | Leveraging high-throughput screening data, deep neural networks, and conditional generative adversarial networks to advance predictive toxicology. |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Green, AJ, Mohlenkamp, MJ, Das, J, Chaudhari, M, Truong, L, Tanguay, RL, Reif, DM |
Journal | PLoS Comput Biol |
Volume | 17 |
Issue | 7 |
Pagination | e1009135 |
Date Published | 2021 07 |
ISSN | 1553-7358 |
Keywords | Animals, Computational Biology, Embryo, Nonmammalian, High-Throughput Screening Assays, Models, Chemical, Neural Networks, Computer, Toxicity Tests, Toxicology, Zebrafish |
Abstract | There are currently 85,000 chemicals registered with the Environmental Protection Agency (EPA) under the Toxic Substances Control Act, but only a small fraction have measured toxicological data. To address this gap, high-throughput screening (HTS) and computational methods are vital. As part of one such HTS effort, embryonic zebrafish were used to examine a suite of morphological and mortality endpoints at six concentrations from over 1,000 unique chemicals found in the ToxCast library (phase 1 and 2). We hypothesized that by using a conditional generative adversarial network (cGAN) or deep neural networks (DNN), and leveraging this large set of toxicity data we could efficiently predict toxic outcomes of untested chemicals. Utilizing a novel method in this space, we converted the 3D structural information into a weighted set of points while retaining all information about the structure. In vivo toxicity and chemical data were used to train two neural network generators. The first was a DNN (Go-ZT) while the second utilized cGAN architecture (GAN-ZT) to train generators to produce toxicity data. Our results showed that Go-ZT significantly outperformed the cGAN, support vector machine, random forest and multilayer perceptron models in cross-validation, and when tested against an external test dataset. By combining both Go-ZT and GAN-ZT, our consensus model improved the SE, SP, PPV, and Kappa, to 71.4%, 95.9%, 71.4% and 0.673, respectively, resulting in an area under the receiver operating characteristic (AUROC) of 0.837. Considering their potential use as prescreening tools, these models could provide in vivo toxicity predictions and insight into the hundreds of thousands of untested chemicals to prioritize compounds for HT testing. |
DOI | 10.1371/journal.pcbi.1009135 |
Alternate Journal | PLoS Comput Biol |
PubMed ID | 34214078 |
PubMed Central ID | PMC8301607 |
Grant List | P30 ES025128 / ES / NIEHS NIH HHS / United States P30 ES030287 / ES / NIEHS NIH HHS / United States R01 CA161608 / CA / NCI NIH HHS / United States R56 ES030007 / ES / NIEHS NIH HHS / United States |