TitleLeveraging high-throughput screening data, deep neural networks, and conditional generative adversarial networks to advance predictive toxicology.
Publication TypeJournal Article
Year of Publication2021
AuthorsGreen, AJ, Mohlenkamp, MJ, Das, J, Chaudhari, M, Truong, L, Tanguay, RL, Reif, DM
JournalPLoS Comput Biol
Volume17
Issue7
Paginatione1009135
Date Published2021 07
ISSN1553-7358
KeywordsAnimals, Computational Biology, Embryo, Nonmammalian, High-Throughput Screening Assays, Models, Chemical, Neural Networks, Computer, Toxicity Tests, Toxicology, Zebrafish
Abstract

There are currently 85,000 chemicals registered with the Environmental Protection Agency (EPA) under the Toxic Substances Control Act, but only a small fraction have measured toxicological data. To address this gap, high-throughput screening (HTS) and computational methods are vital. As part of one such HTS effort, embryonic zebrafish were used to examine a suite of morphological and mortality endpoints at six concentrations from over 1,000 unique chemicals found in the ToxCast library (phase 1 and 2). We hypothesized that by using a conditional generative adversarial network (cGAN) or deep neural networks (DNN), and leveraging this large set of toxicity data we could efficiently predict toxic outcomes of untested chemicals. Utilizing a novel method in this space, we converted the 3D structural information into a weighted set of points while retaining all information about the structure. In vivo toxicity and chemical data were used to train two neural network generators. The first was a DNN (Go-ZT) while the second utilized cGAN architecture (GAN-ZT) to train generators to produce toxicity data. Our results showed that Go-ZT significantly outperformed the cGAN, support vector machine, random forest and multilayer perceptron models in cross-validation, and when tested against an external test dataset. By combining both Go-ZT and GAN-ZT, our consensus model improved the SE, SP, PPV, and Kappa, to 71.4%, 95.9%, 71.4% and 0.673, respectively, resulting in an area under the receiver operating characteristic (AUROC) of 0.837. Considering their potential use as prescreening tools, these models could provide in vivo toxicity predictions and insight into the hundreds of thousands of untested chemicals to prioritize compounds for HT testing.

DOI10.1371/journal.pcbi.1009135
Alternate JournalPLoS Comput Biol
PubMed ID34214078
PubMed Central IDPMC8301607
Grant ListP30 ES025128 / ES / NIEHS NIH HHS / United States
P30 ES030287 / ES / NIEHS NIH HHS / United States
R01 CA161608 / CA / NCI NIH HHS / United States
R56 ES030007 / ES / NIEHS NIH HHS / United States